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Introduction:  The objective of any linear spec-

tral unmixing procedure is to determine the abundance 
at which the components represented in a pre-
determined end-member library are present in the ob-
served target. This is done by modeling an observed 
spectrum as a linear combination of end-member spec-
tra. Following the work of Ramsey and Christensen [1] 
and Feely and Christensen [2] linear unmixing has 
become a fundamental tool for analysis and interpreta-
tion of thermal infrared emissivity spectra. This tech-
nique was expanded upon by Smith et. al [3] to include 
inferred Martian atmospheric end-member spectra for 
the purpose of analyzing Mars Global Surveyor Ther-
mal Emission Spectrometer (TES) data. The simulta-
neous modeling of atmospheric and surface contribu-
tions to the observed TES spectrum in a single linear 
system has become the most accessible means by 
which the surface emissivity spectrum and inferred 
surface mineralogy can be isolated from a given TES 
spectral observation [4]. In this work we examine the 
application of an advanced constrained optimization 
algorithm to the problem of linear spectral unmixing 
and evaluate its utility in the analysis of TES emissiv-
ity spectra. 

Constrained Linear Optimization:  The funda-
mental problem to be solved in linear spectral unmix-
ing analysis can be expressed as a matrix equation 

 
[G] m ¡ d 

 
where the columns of the n x m design matrix [G] con-
sist of the n-channel end-member library spectra, the 
vector m contains the m best-fit model parameters in a 
least-squares sense, and the vector d is the n-channel 
observed spectrum. In most cases the model parame-
ters are also subject to the linear inequality constraint  
 

mi ≥ 0  |  1 ≤ i ≤ m 
 
which is tantamount to requiring that the model disal-
low the negative presence of an end-member compo-
nent. In the case of TES data, this constraint may be 
relaxed for the atmospheric and blackbody end-
member spectra [4]. 

Iterative End-member Ejection. Previous work in-
volving the unmixing of emissivity spectra has ex-
ploited the non-negativity parameter constraint as the 
means by which the minimization algorithm iterates 
toward a solution [1,2,4]. Iterative End-member Ejec-

tion (IEE) relies on the removal of end-member spec-
tra from the design matrix at each iteration to drive the 
optimization toward a solution. Each iteration begins 
with the unconstrained calculation of the best-fit linear 
least-squares model solution for the observed spectrum 
in terms of the current end-member set. The calculated 
parameter vector is then reviewed for parameters in 
violation the non-negativity constraint. Any end-
members corresponding to negative parameters are 
removed from the end-member suite, and the system of 
equations is solved again with the reduced design ma-
trix. This process continues until the parameter vector 
contains only non-negative values. By iteratively re-
ducing the rank of the design matrix only end-member 
components that make a contribution to the solution 
are retained.  

Bounded Variable Least Squares.  An alternate 
optimization method that supports linear inequality 
constraints is the Bounded Variable Least Squares 
(BVLS) algorithm of Stark and Parker [5]. This 
method is a generalization of the Non-Negative Least 
Squares (NNLS) algorithm of Lawson and Hanson [6] 
that has been developed for enhanced efficiency and 
stability. In contrast to the IEE method, the BVLS al-
gorithm does not require the wholesale ejection of end-
member spectra from consideration to advance toward 
the minimum error solution. All of the end-member 
spectra in the original set are available to the minimi-
zation routine at all stages of the procedure. Internally, 
an active set strategy is used to track the parameters at 
each iteration with respect to the imposed constraints, 
while the Kuhn-Tucker theorem is employed to direct 
the activation and deactivation of end-member spectra 
as the algorithm moves toward the best-fit solution. 
The BVLS algorithm is constructed around the QR 
decomposition method for solving linear least-squares 
problems, which further enhances the numerical effi-
ciency [6]. 

Application to TES Spectral Analysis:  A total 
of 64,431 high quality TES radiance spectra for a 
study area (-10 to +10 E; -5 to +10 N) in the Terra 
Meridiani region of Mars were extracted from the PDS 
archive. The data were then converted to apparent 
emissivity spectra and an unmixing solution was gen-
erated for each observation using the IEE and BVLS 
methods in terms of the end-member suite used by 
Arvidson et. al [7].  For the majority of the apparent 
emissivity observations, the solutions generated by the 
two methods were comparable. However, for a signifi-
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cant fraction of the spectral observations the BVLS 
algorithm demonstrated a quantifiable improvement 
over the IEE procedure. 

Comparison of Model Error Values. Due to the at-
trition of end-member spectra over the course of the 
minimization, the IEE algorithm rarely locates the 
global model error minimum within the solution space 
spanned by the original end-member set. A scatter plot 
comparing the RMS errors associated with the model 
fits to the spectra using the BVLS and IEE methods is 
shown in Figure 1. Points that lie on the diagonal rep-
resent spectra that were equally modeled by both 
methods in terms of the model RMS error. All points 
that lie above the diagonal correspond to observed 
spectra for which the BVLS algorithm generated a 
solution with a lower RMS error. While the majority 
of the observations lie adjacent to the diagonal, the 
distended shape of the data cloud perpendicular to the 
diagonal indicates that the BVLS method is generating 
significant improvement in the model error for a sig-
nificant number of TES observations. 

 

Inappropriate End-member Ejection. The biggest 
drawback of the IEE method is the possibility that the 
algorithm will inappropriately eject a critical end-
member component at an early stage of iteration, ren-
dering the system unable to achieve an accurate mini-
mal error solution. Though the occurrence of this 
breakdown is rare, it is a possibility that needs to be 
accounted for. An apparent emissivity TES spectrum 
exemplifying this problem is shown in Figure 2 along 
with the model spectrum generated by each method. 
This spectrum was acquired from a surface unit in 
Terra Meridiani known to host the mineral hematite 
[8] and a clear hematite spectral signature is present in 
the 275 to 500 wavenumber region. However, the 
hematite end-member was ejected from the design 
matrix by the IEE algorithm in an early iteration. With 
a critical end-member no longer available to the opti-
mization algorithm the final model fit is necessarily of 
lower quality than the fit produced by the BVLS algo-
rithm which included a parameter value of 0.14 for the 
hematite end-member. 

Conclusion:  From the standpoint of numerical 
optimization the IEE method for the solution of a con-
strained liner least-squares problem suffers from two 
weaknesses: 1) IEE rarely achieves the global mini-
mum error solution with respect to the input end-
member suite; and 2) The IEE algorithm is susceptible 
to the inappropriate and unrecoverable ejection of a 
critical end-member from consideration. In this cir-
cumstance, the procedure is no longer capable of 
achieving an acceptable model solution. Both of these 
considerations are accounted for by the BVLS algo-
rithm, as linear inequality constraints are implemented 

internally without the need to reduce the rank of the 
design matrix to step toward the minimum model error 
solution. In light of the stability, versatility, and reli-
ability of the BVLS algorithm as the numerical engine 
used in linear spectral unmixing analyses, it is the ideal 
method for use in situations where explicit supervision 
of the optimization process is not possible.  
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Figure 1 – Comparison of the RMS error values associated with the 
model spectra generated by the BVLS and IEE optimization methods. 

Figure 2 – Example of inappropriate end-member ejection.  
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